Cargando…
Improved detection of Parkinsonian resting tremor with feature engineering and Kalman filtering
OBJECTIVE: Accurate and reliable detection of tremor onset in Parkinson’s disease (PD) is critical to the success of adaptive deep brain stimulation (aDBS) therapy. Here, we investigated the potential use of feature engineering and machine learning methods for more accurate detection of rest tremor...
Autores principales: | Yao, Lin, Brown, Peter, Shoaran, Mahsa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927801/ https://www.ncbi.nlm.nih.gov/pubmed/31744673 http://dx.doi.org/10.1016/j.clinph.2019.09.021 |
Ejemplares similares
-
Identifying and modulating distinct tremor states through peripheral nerve stimulation in Parkinsonian rest tremor
por: Arruda, Beatriz S., et al.
Publicado: (2021) -
The nature of tremor circuits in parkinsonian and essential tremor
por: Cagnan, Hayriye, et al.
Publicado: (2014) -
Comparison of VIM and STN DBS for Parkinsonian Resting and Postural/Action Tremor
por: Parihar, Raminder, et al.
Publicado: (2015) -
Improved Correlation Filter Tracking with Enhanced Features and Adaptive Kalman Filter
por: Yang, Hao, et al.
Publicado: (2019) -
Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?
por: Helmich, Rick C., et al.
Publicado: (2012)