Cargando…
Controllable symmetry breaking solutions for a nonlocal Boussinesq system
The generalized Boussinesq equation is a useful model to describe the water wave. In this paper, with the coupled Alice-Bob (AB) systems, the nonlocal Boussinesq system can be obtained via the parity and time reversal symmetry reduction. By introducing an extended Bäcklund transformation, the symmet...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927962/ https://www.ncbi.nlm.nih.gov/pubmed/31873159 http://dx.doi.org/10.1038/s41598-019-56093-8 |
Sumario: | The generalized Boussinesq equation is a useful model to describe the water wave. In this paper, with the coupled Alice-Bob (AB) systems, the nonlocal Boussinesq system can be obtained via the parity and time reversal symmetry reduction. By introducing an extended Bäcklund transformation, the symmetry breaking rogue wave, symmetry breaking soliton and symmetry breaking breather solutions for a nonlocal Boussinesq system are obtained through the derived Hirota bilinear form. The residual symmetry and finite symmetry transformation of the nonlocal AB-Boussinesq system are also studied. |
---|