Cargando…
Controllable symmetry breaking solutions for a nonlocal Boussinesq system
The generalized Boussinesq equation is a useful model to describe the water wave. In this paper, with the coupled Alice-Bob (AB) systems, the nonlocal Boussinesq system can be obtained via the parity and time reversal symmetry reduction. By introducing an extended Bäcklund transformation, the symmet...
Autores principales: | Fei, Jinxi, Ma, Zhengyi, Cao, Weiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927962/ https://www.ncbi.nlm.nih.gov/pubmed/31873159 http://dx.doi.org/10.1038/s41598-019-56093-8 |
Ejemplares similares
-
Study of analytical method to seek for exact solutions of variant Boussinesq equations
por: Khan, Kamruzzaman, et al.
Publicado: (2014) -
Abundant Resonant Behaviors of Soliton Solutions to the (3+1)-dimensional BKP-Boussinesq Equation
por: Chen, Sijia, et al.
Publicado: (2023) -
General Propagation Lattice Boltzmann Model for the Boussinesq Equation
por: Yang, Wei, et al.
Publicado: (2022) -
Conformal symmetry and nonlinear extensions of nonlocal gravity
por: Cusin, Giulia, et al.
Publicado: (2016) -
Periodic, n-soliton and variable separation solutions for an extended (3+1)-dimensional KP-Boussinesq equation
por: Shao, Chuanlin, et al.
Publicado: (2023)