Cargando…

Angiotensin-Receptor-Associated Protein Modulates Ca(2+) Signals in Photoreceptor and Mossy Fiber cells

Fast, precise and sustained neurotransmission requires graded Ca(2+) signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca(2+) fluxes and Ca(2+) buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-recepto...

Descripción completa

Detalles Bibliográficos
Autores principales: Barro-Soria, Rene, Caicedo, Alejandro, Jägle, Herbert, Merkel, Laura, Zhao, Na, Knop, Gabriel, Gierke, Kaspar, Dannullis, Andrea, Castrop, Hayo, Brandstätter, Johann Helmut, Kirchhoff, Frank, Feigenspan, Andreas, Strauß, Olaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928155/
https://www.ncbi.nlm.nih.gov/pubmed/31873081
http://dx.doi.org/10.1038/s41598-019-55380-8
Descripción
Sumario:Fast, precise and sustained neurotransmission requires graded Ca(2+) signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca(2+) fluxes and Ca(2+) buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-receptor-associated protein (ATRAP) localizes to synaptic terminals throughout the central nervous system. In the retinal photoreceptor synapse and the cerebellar mossy fiber-granule cell synapse, we find that ATRAP is involved in the generation of depolarization-evoked synaptic Ca(2+) transients. Compared to wild type, Ca(2+) imaging in acutely isolated preparations of the retina and the cerebellum from ATRAP knockout mice reveals a significant reduction of the sarcoendoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) activity. Thus, in addition to its conventional role in angiotensin signaling, ATRAP also modulates presynaptic Ca(2+) signaling within the central nervous system.