Cargando…
The local immune response during Echinococcus granulosus growth in a quantitative hepatic experimental model
The local immune mechanisms responsible for the establishment and development of Echinococcus granulosus sensu stricto infection in the liver, have been little explored. We developed a suitable experimental model that mimics naturally infected livers using portal injection of protoscoleces. Opposite...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928226/ https://www.ncbi.nlm.nih.gov/pubmed/31873157 http://dx.doi.org/10.1038/s41598-019-56098-3 |
Sumario: | The local immune mechanisms responsible for the establishment and development of Echinococcus granulosus sensu stricto infection in the liver, have been little explored. We developed a suitable experimental model that mimics naturally infected livers using portal injection of protoscoleces. Opposite to Echinococcus multilocularis infection which is dose-dependent, fully mature hydatid cysts can be established in the liver whatever the injection dose; although most of the infection sites were seen at the establishment phase as inflammatory granulomas associated with fibrosis, they never matured into cysts. At the establishment phase, a strong immune response was composed of T and B cells, with T1-type, T2-type cells and cytokines and IL-10-secreting CD8(+) T cells in the liver. At the established phase, results suggested a local production of antibodies by B cells, and an involvement of NK and NKT cells. Infection outcome and local immune response in the liver, were different in the mouse models of Echinococcus granulosus sensu stricto and Echinococcus multilocularis respectively; however, only early specificities at the microenvironment level might explain the major differences found between the lesions induced by the two species. Our quantitative experimental model appears fully appropriate to further study this microenvironment and its relationship with each cestode species. |
---|