Cargando…
Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma
Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the los...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928391/ https://www.ncbi.nlm.nih.gov/pubmed/31894207 http://dx.doi.org/10.1093/braincomms/fcz035 |
_version_ | 1783482476364038144 |
---|---|
author | Tribble, James R Vasalauskaite, Asta Redmond, Tony Young, Robert D Hassan, Shoaib Fautsch, Michael P Sengpiel, Frank Williams, Pete A Morgan, James E |
author_facet | Tribble, James R Vasalauskaite, Asta Redmond, Tony Young, Robert D Hassan, Shoaib Fautsch, Michael P Sengpiel, Frank Williams, Pete A Morgan, James E |
author_sort | Tribble, James R |
collection | PubMed |
description | Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure–function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure–function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma. |
format | Online Article Text |
id | pubmed-6928391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-69283912019-12-30 Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma Tribble, James R Vasalauskaite, Asta Redmond, Tony Young, Robert D Hassan, Shoaib Fautsch, Michael P Sengpiel, Frank Williams, Pete A Morgan, James E Brain Commun Original Article Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure–function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure–function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma. Oxford University Press 2019-11-28 /pmc/articles/PMC6928391/ /pubmed/31894207 http://dx.doi.org/10.1093/braincomms/fcz035 Text en © The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Tribble, James R Vasalauskaite, Asta Redmond, Tony Young, Robert D Hassan, Shoaib Fautsch, Michael P Sengpiel, Frank Williams, Pete A Morgan, James E Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
title | Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
title_full | Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
title_fullStr | Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
title_full_unstemmed | Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
title_short | Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
title_sort | midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928391/ https://www.ncbi.nlm.nih.gov/pubmed/31894207 http://dx.doi.org/10.1093/braincomms/fcz035 |
work_keys_str_mv | AT tribblejamesr midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT vasalauskaiteasta midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT redmondtony midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT youngrobertd midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT hassanshoaib midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT fautschmichaelp midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT sengpielfrank midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT williamspetea midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma AT morganjamese midgetretinalganglioncelldendriticandmitochondrialdegenerationisanearlyfeatureofhumanglaucoma |