Cargando…

Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients

Fast-track surgery is becoming increasingly popular, whereas the monitoring of postoperative rehabilitation remains a matter of considerable debate. The aim of this study was to validate a newly developed wearable system intended to monitor knee function and mobility. A sensor system with a nine-deg...

Descripción completa

Detalles Bibliográficos
Autores principales: Kayaalp, Mahmut Enes, Agres, Alison N., Reichmann, Jan, Bashkuev, Maxim, Duda, Georg N., Becker, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928629/
https://www.ncbi.nlm.nih.gov/pubmed/31783551
http://dx.doi.org/10.3390/s19235193
_version_ 1783482515929956352
author Kayaalp, Mahmut Enes
Agres, Alison N.
Reichmann, Jan
Bashkuev, Maxim
Duda, Georg N.
Becker, Roland
author_facet Kayaalp, Mahmut Enes
Agres, Alison N.
Reichmann, Jan
Bashkuev, Maxim
Duda, Georg N.
Becker, Roland
author_sort Kayaalp, Mahmut Enes
collection PubMed
description Fast-track surgery is becoming increasingly popular, whereas the monitoring of postoperative rehabilitation remains a matter of considerable debate. The aim of this study was to validate a newly developed wearable system intended to monitor knee function and mobility. A sensor system with a nine-degree-of-freedom (DOF) inertial measurement unit (IMU) was developed. Thirteen healthy volunteers performed five 10-meter walking trials with simultaneous sensor and motion capture data collection. The obtained kinematic waveforms were analysed using root mean square error (RMSE) and correlation coefficient (CC) calculations. The Bland–Altman method was used for the agreement of discrete parameters consisting of peak knee angles between systems. To test the reliability, 10 other subjects with sensors walked a track of 10 metres on two consecutive days. The Pearson CC was excellent for the walking data set between both systems (r = 0.96) and very good (r = 0.95) within the sensor system. The RMSE during walking was 5.17° between systems and 6.82° within sensor measurements. No significant differences were detected between the mean values observed, except for the extension angle during the stance phase (E1). Similar results were obtained for the repeatability test. Intra-class correlation coefficients (ICCs) between systems were excellent for the flexion angle during the swing phase (F1); good for the flexion angle during the stance phase (F2) and the re-extension angle, which was calculated by subtracting the extension angle at swing phase (E2) from F2; and moderate for the extension angle during the stance phase (E1), E2 and the range of motion (ROM). ICCs within the sensor measurements were good for the ROM, F2 and re-extension, and moderate for F1, E1 and E2. The study shows that the novel sensor system can record sagittal knee kinematics during walking in healthy subjects comparable to those of a motion capture system.
format Online
Article
Text
id pubmed-6928629
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69286292019-12-26 Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients Kayaalp, Mahmut Enes Agres, Alison N. Reichmann, Jan Bashkuev, Maxim Duda, Georg N. Becker, Roland Sensors (Basel) Article Fast-track surgery is becoming increasingly popular, whereas the monitoring of postoperative rehabilitation remains a matter of considerable debate. The aim of this study was to validate a newly developed wearable system intended to monitor knee function and mobility. A sensor system with a nine-degree-of-freedom (DOF) inertial measurement unit (IMU) was developed. Thirteen healthy volunteers performed five 10-meter walking trials with simultaneous sensor and motion capture data collection. The obtained kinematic waveforms were analysed using root mean square error (RMSE) and correlation coefficient (CC) calculations. The Bland–Altman method was used for the agreement of discrete parameters consisting of peak knee angles between systems. To test the reliability, 10 other subjects with sensors walked a track of 10 metres on two consecutive days. The Pearson CC was excellent for the walking data set between both systems (r = 0.96) and very good (r = 0.95) within the sensor system. The RMSE during walking was 5.17° between systems and 6.82° within sensor measurements. No significant differences were detected between the mean values observed, except for the extension angle during the stance phase (E1). Similar results were obtained for the repeatability test. Intra-class correlation coefficients (ICCs) between systems were excellent for the flexion angle during the swing phase (F1); good for the flexion angle during the stance phase (F2) and the re-extension angle, which was calculated by subtracting the extension angle at swing phase (E2) from F2; and moderate for the extension angle during the stance phase (E1), E2 and the range of motion (ROM). ICCs within the sensor measurements were good for the ROM, F2 and re-extension, and moderate for F1, E1 and E2. The study shows that the novel sensor system can record sagittal knee kinematics during walking in healthy subjects comparable to those of a motion capture system. MDPI 2019-11-27 /pmc/articles/PMC6928629/ /pubmed/31783551 http://dx.doi.org/10.3390/s19235193 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kayaalp, Mahmut Enes
Agres, Alison N.
Reichmann, Jan
Bashkuev, Maxim
Duda, Georg N.
Becker, Roland
Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients
title Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients
title_full Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients
title_fullStr Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients
title_full_unstemmed Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients
title_short Validation of a Novel Device for the Knee Monitoring of Orthopaedic Patients
title_sort validation of a novel device for the knee monitoring of orthopaedic patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928629/
https://www.ncbi.nlm.nih.gov/pubmed/31783551
http://dx.doi.org/10.3390/s19235193
work_keys_str_mv AT kayaalpmahmutenes validationofanoveldeviceforthekneemonitoringoforthopaedicpatients
AT agresalisonn validationofanoveldeviceforthekneemonitoringoforthopaedicpatients
AT reichmannjan validationofanoveldeviceforthekneemonitoringoforthopaedicpatients
AT bashkuevmaxim validationofanoveldeviceforthekneemonitoringoforthopaedicpatients
AT dudageorgn validationofanoveldeviceforthekneemonitoringoforthopaedicpatients
AT beckerroland validationofanoveldeviceforthekneemonitoringoforthopaedicpatients