Cargando…

Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors

In dimensional metrology it is necessary to carry out multi-axis angle and displacement measurement for high-precision positioning. Although the state-of-the-art linear displacement sensors have sub-nanometric measurement resolution, it is not easy to suppress the increase of measurement uncertainty...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimizu, Yuki, Matsukuma, Hiraku, Gao, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928657/
https://www.ncbi.nlm.nih.gov/pubmed/31805630
http://dx.doi.org/10.3390/s19235289
Descripción
Sumario:In dimensional metrology it is necessary to carry out multi-axis angle and displacement measurement for high-precision positioning. Although the state-of-the-art linear displacement sensors have sub-nanometric measurement resolution, it is not easy to suppress the increase of measurement uncertainty when being applied for multi-axis angle and displacement measurement due to the Abbe errors and the influences of sensor misalignment. In this review article, the state-of-the-art multi-axis optical sensors, such as the three-axis autocollimator, the three-axis planar encoder, and the six-degree-of-freedom planar encoder based on a planar scale grating are introduced. With the employment of grating reflectors, measurement of multi-axis translational and angular displacement can be carried out while employing a single laser beam. Fabrication methods of a large-area planar scale grating based on a single-point diamond cutting with the fast tool servo technique and the interference lithography are also presented, followed by the description of the evaluation method of the large-area planar scale grating based on the Fizeau interferometer.