Cargando…
Stable Tensor Principal Component Pursuit: Error Bounds and Efficient Algorithms
The rapid development of sensor technology gives rise to the emergence of huge amounts of tensor (i.e., multi-dimensional array) data. For various reasons such as sensor failures and communication loss, the tensor data may be corrupted by not only small noises but also gross corruptions. This paper...
Autores principales: | Fang, Wei, Wei, Dongxu, Zhang, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928658/ https://www.ncbi.nlm.nih.gov/pubmed/31817050 http://dx.doi.org/10.3390/s19235335 |
Ejemplares similares
-
Video Foreground Detection Algorithm Based on Fast Principal Component Pursuit and Motion Saliency
por: Chen, Rui, et al.
Publicado: (2019) -
Principal Component Pursuit for Pattern Identification in Environmental Mixtures
por: Gibson, Elizabeth A., et al.
Publicado: (2022) -
An Efficient Orthonormalization-Free Approach for Sparse Dictionary Learning and Dual Principal Component Pursuit
por: Hu, Xiaoyin, et al.
Publicado: (2020) -
Principal component analysis networks and algorithms
por: Kong, Xiangyu, et al.
Publicado: (2017) -
Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
por: Ai, Danni, et al.
Publicado: (2015)