Cargando…

High-Sensitivity, Large Dynamic Range Refractive Index Measurement Using an Optical Microfiber Coupler

Wavelength tracking methods are widely employed in fiber-optic interferometers, but they suffer from the problem of fringe order ambiguity, which limits the dynamic range within half of the free spectral range. Here, we propose a new sensing strategy utilizing the unique property of the dispersion t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiajia, Li, Xiong, Fu, Jun, Li, Kaiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928659/
https://www.ncbi.nlm.nih.gov/pubmed/31766316
http://dx.doi.org/10.3390/s19235078
Descripción
Sumario:Wavelength tracking methods are widely employed in fiber-optic interferometers, but they suffer from the problem of fringe order ambiguity, which limits the dynamic range within half of the free spectral range. Here, we propose a new sensing strategy utilizing the unique property of the dispersion turning point in an optical microfiber coupler mode interferometer. Numerical calculations show that the position of the dispersion turning point is sensitive to the ambient refractive index, and its position can be approximated by the dual peaks/dips that lay symmetrically on both sides. In this study, we demonstrate the potential of this sensing strategy, achieving high sensitivities of larger than 5327.3 nm/RIU (refractive index unit) in the whole refractive index (RI) range of 1.333–1.4186. This sensor also shows good performance in narrow RI ranges with high resolution and high linearity. The resolution can be improved by increasing the length of the coupler.