Cargando…
Impact of Automatic Query Generation and Quality Recognition Using Deep Learning to Curate Evidence From Biomedical Literature: Empirical Study
BACKGROUND: The quality of health care is continuously improving and is expected to improve further because of the advancement of machine learning and knowledge-based techniques along with innovation and availability of wearable sensors. With these advancements, health care professionals are now bec...
Autores principales: | Afzal, Muhammad, Hussain, Maqbool, Malik, Khalid Mahmood, Lee, Sungyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928703/ https://www.ncbi.nlm.nih.gov/pubmed/31815673 http://dx.doi.org/10.2196/13430 |
Ejemplares similares
-
Knowledge-Based Query Construction Using the CDSS Knowledge Base for Efficient Evidence Retrieval
por: Afzal, Muhammad, et al.
Publicado: (2015) -
Linked open data-based framework for automatic biomedical ontology generation
por: Alobaidi, Mazen, et al.
Publicado: (2018) -
Clinical Context–Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation
por: Afzal, Muhammad, et al.
Publicado: (2020) -
Discovering biomedical semantic relations in PubMed queries for information retrieval and database curation
por: Huang, Chung-Chi, et al.
Publicado: (2016) -
COVID-19 Knowledge Resource Categorization and Tracking: Conceptual Framework Study
por: Afzal, Muhammad, et al.
Publicado: (2021)