Cargando…
Adaptive Information Visualization for Maritime Traffic Stream Sensor Data with Parallel Context Acquisition and Machine Learning
Excessive information significantly increases the mental burden on operators of critical monitoring services such as maritime and air traffic control. In these fields, vessels and aircraft have sensors that transmit data to a control center. Because of the large volume of collected data, it is infea...
Autores principales: | Kim, Kwang-il, Lee, Keon Myung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928724/ https://www.ncbi.nlm.nih.gov/pubmed/31795498 http://dx.doi.org/10.3390/s19235273 |
Ejemplares similares
-
Deep Learning-Based Caution Area Traffic Prediction with Automatic Identification System Sensor Data
por: Kim, Kwang-Il, et al.
Publicado: (2018) -
Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding
por: Venskus, Julius, et al.
Publicado: (2019) -
Simple parallel stream to serial stream converter for Active Pixel Sensor readout
por: Kushpil, V, et al.
Publicado: (2009) -
Every Vessel Counts: Neural Network Based Maritime Traffic Counting System
por: Petković, Miro, et al.
Publicado: (2023) -
An Adaptive Parallel Processing Strategy for Complex Event Processing Systems over Data Streams in Wireless Sensor Networks
por: Xiao, Fuyuan, et al.
Publicado: (2018)