Cargando…
A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit
The positioning technology to find shallow underground vibration sources based on a wireless sensor network is receiving great interest in the field of underground position measurements. The slow peaking and strong multi-waveform aliasing typical of the underground vibration signal result in a low e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928733/ https://www.ncbi.nlm.nih.gov/pubmed/31757038 http://dx.doi.org/10.3390/s19235067 |
_version_ | 1783482540463489024 |
---|---|
author | Li, Jian Yan, Xinlei Li, Maojin Meng, Ming Yan, Xin |
author_facet | Li, Jian Yan, Xinlei Li, Maojin Meng, Ming Yan, Xin |
author_sort | Li, Jian |
collection | PubMed |
description | The positioning technology to find shallow underground vibration sources based on a wireless sensor network is receiving great interest in the field of underground position measurements. The slow peaking and strong multi-waveform aliasing typical of the underground vibration signal result in a low extraction accuracy of the time difference and a poor source-positioning accuracy. At the same time, the transmission of large amounts of sensor data and the host computer’s slow data processing speed make locating a source a slow process. To address the above problems, this paper proposes a method for high-precision time-difference measurements in near-field blasting and a method for its hardware implementation. First, based on the broadband that is typical of blast waves, the peak frequency of the P-wave was obtained in the time–frequency domain, taking advantage of the difference in the propagation speed of the P-wave, S-wave, and the surface wave. Second, the phase difference between two sensor nodes was found by means of a spectral decomposition and a correlation measurement. Third, the phase ambiguity was eliminated using the time interval of the first break and the dynamic characteristics of the sensors. Finally, following a top-down design idea, the hardware system was designed using Field Programmable Gate Array(FPGA). Verification, using both numerical simulations and experiments, suggested that compared with generalized cross-correlation-based time-difference measurement methods, the proposed method produced a higher time-difference resolution and accuracy. Compared with the traditional host computer post-position positioning method, the proposed method was significantly quicker. It can be seen that the proposed method provides a new solution for solving high-precision and quick source-location problems, and affords a technical means for developing high-speed, real-time source-location instruments. |
format | Online Article Text |
id | pubmed-6928733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69287332019-12-26 A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit Li, Jian Yan, Xinlei Li, Maojin Meng, Ming Yan, Xin Sensors (Basel) Article The positioning technology to find shallow underground vibration sources based on a wireless sensor network is receiving great interest in the field of underground position measurements. The slow peaking and strong multi-waveform aliasing typical of the underground vibration signal result in a low extraction accuracy of the time difference and a poor source-positioning accuracy. At the same time, the transmission of large amounts of sensor data and the host computer’s slow data processing speed make locating a source a slow process. To address the above problems, this paper proposes a method for high-precision time-difference measurements in near-field blasting and a method for its hardware implementation. First, based on the broadband that is typical of blast waves, the peak frequency of the P-wave was obtained in the time–frequency domain, taking advantage of the difference in the propagation speed of the P-wave, S-wave, and the surface wave. Second, the phase difference between two sensor nodes was found by means of a spectral decomposition and a correlation measurement. Third, the phase ambiguity was eliminated using the time interval of the first break and the dynamic characteristics of the sensors. Finally, following a top-down design idea, the hardware system was designed using Field Programmable Gate Array(FPGA). Verification, using both numerical simulations and experiments, suggested that compared with generalized cross-correlation-based time-difference measurement methods, the proposed method produced a higher time-difference resolution and accuracy. Compared with the traditional host computer post-position positioning method, the proposed method was significantly quicker. It can be seen that the proposed method provides a new solution for solving high-precision and quick source-location problems, and affords a technical means for developing high-speed, real-time source-location instruments. MDPI 2019-11-20 /pmc/articles/PMC6928733/ /pubmed/31757038 http://dx.doi.org/10.3390/s19235067 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Jian Yan, Xinlei Li, Maojin Meng, Ming Yan, Xin A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit |
title | A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit |
title_full | A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit |
title_fullStr | A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit |
title_full_unstemmed | A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit |
title_short | A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit |
title_sort | method of fpga-based extraction of high-precision time-difference information and implementation of its hardware circuit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928733/ https://www.ncbi.nlm.nih.gov/pubmed/31757038 http://dx.doi.org/10.3390/s19235067 |
work_keys_str_mv | AT lijian amethodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT yanxinlei amethodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT limaojin amethodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT mengming amethodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT yanxin amethodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT lijian methodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT yanxinlei methodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT limaojin methodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT mengming methodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit AT yanxin methodoffpgabasedextractionofhighprecisiontimedifferenceinformationandimplementationofitshardwarecircuit |