Cargando…
Hot Spots and Their Contribution to the Self-Assembly of the Viral Capsid: In Silico Prediction and Analysis
The viral capsid is a macromolecular complex formed by a defined number of self-assembled proteins, which, in many cases, are biopolymers with an identical amino acid sequence. Specific protein–protein interactions (PPI) drive the capsid self-assembly process, leading to several distinct protein int...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928768/ https://www.ncbi.nlm.nih.gov/pubmed/31783519 http://dx.doi.org/10.3390/ijms20235966 |
Sumario: | The viral capsid is a macromolecular complex formed by a defined number of self-assembled proteins, which, in many cases, are biopolymers with an identical amino acid sequence. Specific protein–protein interactions (PPI) drive the capsid self-assembly process, leading to several distinct protein interfaces. Following the PPI hot spot hypothesis, we present a conservation-based methodology to identify those interface residues hypothesized to be crucial elements on the self-assembly and thermodynamic stability of the capsid. We validate the predictions through a rigorous physical framework which integrates molecular dynamics simulations and free energy calculations by Umbrella sampling and the potential of mean force using an all-atom molecular representation of the capsid proteins of an icosahedral virus in an explicit solvent. Our results show that a single mutation in any of the structure-conserved hot spots significantly perturbs the quaternary protein–protein interaction, decreasing the absolute value of the binding free energy, without altering the protein’s secondary nor tertiary structure. Our conservation-based hot spot prediction methodology can lead to strategies to rationally modulate the capsid’s thermodynamic properties. |
---|