Cargando…

A Novel Finger-Controlled Passive RFID Tag Design for Human–Machine Interaction

Radio frequency identification (RFID) has shown its potential in human–machine interaction thanks to its inherent function of identification and relevant physical information of signals, but complex data processing and undesirable input accuracy restrict its application and promotion in practical us...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qi, Li, Hui, Yu, Yu-Feng, Zhao, Wen-Sheng, Zhang, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928781/
https://www.ncbi.nlm.nih.gov/pubmed/31766786
http://dx.doi.org/10.3390/s19235125
Descripción
Sumario:Radio frequency identification (RFID) has shown its potential in human–machine interaction thanks to its inherent function of identification and relevant physical information of signals, but complex data processing and undesirable input accuracy restrict its application and promotion in practical use. This paper proposes a novel finger-controlled passive RFID tag design for human–machine interaction. The tag antenna is based on a dipole antenna with a separated T-match structure, which is able to adjust the state of the tag by the press of a finger. The state of the proposed tag can be recognized directly by the code received by the RFID reader, and no complex data processing is needed. Since the code is hardly affected by surroundings, the proposed tag is suitable to be used as a wireless switch or control button in multiple scenarios. Moreover, arrays of the proposed tag with rational tag arrangements could contribute to a series of manual control devices, such as a wireless keyboard, a remote controller, and a wireless gamepad, without batteries. A 3 × 4 array of the finger-controlled tag is presented to constitute a simple passive RFID keyboard as an example of the applications of the proposed tag array and it refers to the arrangement of a keypad and can achieve precise, convenient, quick, and practical commands and text input into machines by pressing the tags with fingers. Simulations and measurements of the proposed tag and tag array have been carried out to validate their performances in human–machine interaction.