Cargando…
A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE †
This work presents a structural health monitoring (SHM) approach for the detection and classification of structural changes. The proposed strategy is based on t-distributed stochastic neighbor embedding (t-SNE), a nonlinear procedure that is able to represent the local structure of high-dimensional...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928785/ https://www.ncbi.nlm.nih.gov/pubmed/31766460 http://dx.doi.org/10.3390/s19235097 |
_version_ | 1783482552635359232 |
---|---|
author | Agis, David Pozo, Francesc |
author_facet | Agis, David Pozo, Francesc |
author_sort | Agis, David |
collection | PubMed |
description | This work presents a structural health monitoring (SHM) approach for the detection and classification of structural changes. The proposed strategy is based on t-distributed stochastic neighbor embedding (t-SNE), a nonlinear procedure that is able to represent the local structure of high-dimensional data in a low-dimensional space. The steps of the detection and classification procedure are: (i) the data collected are scaled using mean-centered group scaling (MCGS); (ii) then principal component analysis (PCA) is applied to reduce the dimensionality of the data set; (iii) t-SNE is applied to represent the scaled and reduced data as points in a plane defining as many clusters as different structural states; and (iv) the current structure to be diagnosed will be associated with a cluster or structural state based on three strategies: (a) the smallest point-centroid distance; (b) majority voting; and (c) the sum of the inverse distances. The combination of PCA and t-SNE improves the quality of the clusters related to the structural states. The method is evaluated using experimental data from an aluminum plate with four piezoelectric transducers (PZTs). Results are illustrated in frequency domain, and they manifest the high classification accuracy and the strong performance of this method. |
format | Online Article Text |
id | pubmed-6928785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69287852019-12-26 A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † Agis, David Pozo, Francesc Sensors (Basel) Article This work presents a structural health monitoring (SHM) approach for the detection and classification of structural changes. The proposed strategy is based on t-distributed stochastic neighbor embedding (t-SNE), a nonlinear procedure that is able to represent the local structure of high-dimensional data in a low-dimensional space. The steps of the detection and classification procedure are: (i) the data collected are scaled using mean-centered group scaling (MCGS); (ii) then principal component analysis (PCA) is applied to reduce the dimensionality of the data set; (iii) t-SNE is applied to represent the scaled and reduced data as points in a plane defining as many clusters as different structural states; and (iv) the current structure to be diagnosed will be associated with a cluster or structural state based on three strategies: (a) the smallest point-centroid distance; (b) majority voting; and (c) the sum of the inverse distances. The combination of PCA and t-SNE improves the quality of the clusters related to the structural states. The method is evaluated using experimental data from an aluminum plate with four piezoelectric transducers (PZTs). Results are illustrated in frequency domain, and they manifest the high classification accuracy and the strong performance of this method. MDPI 2019-11-21 /pmc/articles/PMC6928785/ /pubmed/31766460 http://dx.doi.org/10.3390/s19235097 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Agis, David Pozo, Francesc A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † |
title | A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † |
title_full | A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † |
title_fullStr | A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † |
title_full_unstemmed | A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † |
title_short | A Frequency-Based Approach for the Detection and Classification of Structural Changes Using t-SNE † |
title_sort | frequency-based approach for the detection and classification of structural changes using t-sne † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928785/ https://www.ncbi.nlm.nih.gov/pubmed/31766460 http://dx.doi.org/10.3390/s19235097 |
work_keys_str_mv | AT agisdavid afrequencybasedapproachforthedetectionandclassificationofstructuralchangesusingtsne AT pozofrancesc afrequencybasedapproachforthedetectionandclassificationofstructuralchangesusingtsne AT agisdavid frequencybasedapproachforthedetectionandclassificationofstructuralchangesusingtsne AT pozofrancesc frequencybasedapproachforthedetectionandclassificationofstructuralchangesusingtsne |