Cargando…

A Combined Linkage and GWAS Analysis Identifies QTLs Linked to Soybean Seed Protein and Oil Content

Soybean is an excellent source of vegetable protein and edible oil. Understanding the genetic basis of protein and oil content will improve the breeding programs for soybean. Linkage analysis and genome-wide association study (GWAS) tools were combined to detect quantitative trait loci (QTL) that ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tengfei, Wu, Tingting, Wang, Liwei, Jiang, Bingjun, Zhen, Caixin, Yuan, Shan, Hou, Wensheng, Wu, Cunxiang, Han, Tianfu, Sun, Shi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928826/
https://www.ncbi.nlm.nih.gov/pubmed/31775326
http://dx.doi.org/10.3390/ijms20235915
Descripción
Sumario:Soybean is an excellent source of vegetable protein and edible oil. Understanding the genetic basis of protein and oil content will improve the breeding programs for soybean. Linkage analysis and genome-wide association study (GWAS) tools were combined to detect quantitative trait loci (QTL) that are associated with protein and oil content in soybean. Three hundred and eight recombinant inbred lines (RILs) containing 3454 single nucleotide polymorphism (SNP) markers and 200 soybean accessions, including 94,462 SNPs and indels, were applied to identify QTL intervals and significant SNP loci. Intervals on chromosomes 1, 15, and 20 were correlated with both traits, and QTL qPro15-1, qPro20-1, and qOil5-1 reproducibly correlated with large phenotypic variations. SNP loci on chromosome 20 that overlapped with qPro20-1 were reproducibly connected to both traits by GWAS (p < 10(−4)). Twenty-five candidate genes with putative roles in protein and/or oil metabolisms within two regions (qPro15-1, qPro20-1) were identified, and eight of these genes showed differential expressions in parent lines during late reproductive growth stages, consistent with a role in controlling protein and oil content. The new well-defined QTL should significantly improve molecular breeding programs, and the identified candidate genes may help elucidate the mechanisms of protein and oil biosynthesis.