Cargando…
Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques
Wearable sensors have the potential to enable comprehensive patient characterization and optimized clinical intervention. Critical to realizing this vision is accurate estimation of biomechanical time-series in daily-life, including joint, segment, and muscle kinetics and kinematics, from wearable s...
Autores principales: | Gurchiek, Reed D., Cheney, Nick, McGinnis, Ryan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928851/ https://www.ncbi.nlm.nih.gov/pubmed/31795151 http://dx.doi.org/10.3390/s19235227 |
Ejemplares similares
-
Rapid detection of internalizing diagnosis in young children enabled by wearable sensors and machine learning
por: McGinnis, Ryan S., et al.
Publicado: (2019) -
Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles
por: Adamowicz, Lukas, et al.
Publicado: (2019) -
A Digital Therapeutic Intervention Delivering Biofeedback for Panic Attacks (PanicMechanic): Feasibility and Usability Study
por: McGinnis, Ellen, et al.
Publicado: (2022) -
Open-source dataset reveals relationship between walking bout duration and fall risk classification performance in persons with multiple sclerosis
por: Meyer, Brett M., et al.
Publicado: (2022) -
Classification and Detection of Breathing Patterns with Wearable Sensors and Deep Learning
por: McClure, Kristin, et al.
Publicado: (2020)