Cargando…
Learning Deep Hierarchical Spatial–Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN
Every pixel in a hyperspectral image contains detailed spectral information in hundreds of narrow bands captured by hyperspectral sensors. Pixel-wise classification of a hyperspectral image is the cornerstone of various hyperspectral applications. Nowadays, deep learning models represented by the co...
Autores principales: | Feng, Fan, Wang, Shuangting, Wang, Chunyang, Zhang, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928880/ https://www.ncbi.nlm.nih.gov/pubmed/31795511 http://dx.doi.org/10.3390/s19235276 |
Ejemplares similares
-
Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN
por: Zhang, Jin, et al.
Publicado: (2020) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
por: Li, Chenming, et al.
Publicado: (2019) -
Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products
por: Zhu, Hongyan, et al.
Publicado: (2020) -
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
por: Cheng, Shuli, et al.
Publicado: (2021)