Cargando…

3D Tensor Based Nonlocal Low Rank Approximation in Dynamic PET Reconstruction

Reconstructing images from multi-view projections is a crucial task both in the computer vision community and in the medical imaging community, and dynamic positron emission tomography (PET) is no exception. Unfortunately, image quality is inevitably degraded by the limitations of photon emissions a...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Nuobei, Chen, Yunmei, Liu, Huafeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928938/
https://www.ncbi.nlm.nih.gov/pubmed/31805743
http://dx.doi.org/10.3390/s19235299
Descripción
Sumario:Reconstructing images from multi-view projections is a crucial task both in the computer vision community and in the medical imaging community, and dynamic positron emission tomography (PET) is no exception. Unfortunately, image quality is inevitably degraded by the limitations of photon emissions and the trade-off between temporal and spatial resolution. In this paper, we develop a novel tensor based nonlocal low-rank framework for dynamic PET reconstruction. Spatial structures are effectively enhanced not only by nonlocal and sparse features, but momentarily by tensor-formed low-rank approximations in the temporal realm. Moreover, the total variation is well regularized as a complementation for denoising. These regularizations are efficiently combined into a Poisson PET model and jointly solved by distributed optimization. The experiments demonstrated in this paper validate the excellent performance of the proposed method in dynamic PET.