Cargando…
A Strong Machine Learning Classifier and Decision Stumps Based Hybrid AdaBoost Classification Algorithm for Cognitive Radios †
Machine learning (ML) based classification methods have been viewed as one kind of alternative solution for cooperative spectrum sensing (CSS) in recent years. In this paper, ML techniques based CSS algorithms are investigated for cognitive radio networks (CRN). Specifically, a strong machine learni...
Autores principales: | Chen, Siji, Shen, Bin, Wang, Xin, Yoo, Sang-Jo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928977/ https://www.ncbi.nlm.nih.gov/pubmed/31757117 http://dx.doi.org/10.3390/s19235077 |
Ejemplares similares
-
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022) -
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
por: Hu, Jianfeng
Publicado: (2017) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009) -
An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost+Random Forest Algorithm
por: Li, Runchuan, et al.
Publicado: (2021)