Cargando…

Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement

Modern railway track health monitoring requires high accuracy measurements to ensure comfort and safety. Although Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integration has been extended to track geometry measurements to improve the work efficiency, it has been question...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Quan, Chen, Qijin, Niu, Xiaoji, Shi, Chuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928995/
https://www.ncbi.nlm.nih.gov/pubmed/31805667
http://dx.doi.org/10.3390/s19235296
_version_ 1783482601878585344
author Zhang, Quan
Chen, Qijin
Niu, Xiaoji
Shi, Chuang
author_facet Zhang, Quan
Chen, Qijin
Niu, Xiaoji
Shi, Chuang
author_sort Zhang, Quan
collection PubMed
description Modern railway track health monitoring requires high accuracy measurements to ensure comfort and safety. Although Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integration has been extended to track geometry measurements to improve the work efficiency, it has been questioned due to its positioning accuracy at the centimeter or millimeter level. We propose the relative spatial accuracy based on the accuracy requirement of track health monitoring. A requirement assessment of the spatial relative accuracy is conducted for shortwave track irregularity measurements based on evaluation indicators and relative accuracy calculations. The threshold values of the relative spatial accuracy that satisfy the constraints of shortwave track irregularity measurements are derived. Motion-constrained GNSS/INS integration is performed to improve the navigation accuracy considering the dynamic characteristics of the track geometry measurement trolley. The results of field tests show that the mean square error and the Allan deviation of the relative position errors of motion-constrained GNSS/INS integration are smaller than 0.67 mm and 0.16 mm, respectively, which indicates that this approach meets the accuracy requirements of shortwave track irregularities, especially vertical irregularities. This work can provide support for the application of GNSS/INS systems in track irregularity measurement.
format Online
Article
Text
id pubmed-6928995
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-69289952019-12-26 Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement Zhang, Quan Chen, Qijin Niu, Xiaoji Shi, Chuang Sensors (Basel) Article Modern railway track health monitoring requires high accuracy measurements to ensure comfort and safety. Although Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integration has been extended to track geometry measurements to improve the work efficiency, it has been questioned due to its positioning accuracy at the centimeter or millimeter level. We propose the relative spatial accuracy based on the accuracy requirement of track health monitoring. A requirement assessment of the spatial relative accuracy is conducted for shortwave track irregularity measurements based on evaluation indicators and relative accuracy calculations. The threshold values of the relative spatial accuracy that satisfy the constraints of shortwave track irregularity measurements are derived. Motion-constrained GNSS/INS integration is performed to improve the navigation accuracy considering the dynamic characteristics of the track geometry measurement trolley. The results of field tests show that the mean square error and the Allan deviation of the relative position errors of motion-constrained GNSS/INS integration are smaller than 0.67 mm and 0.16 mm, respectively, which indicates that this approach meets the accuracy requirements of shortwave track irregularities, especially vertical irregularities. This work can provide support for the application of GNSS/INS systems in track irregularity measurement. MDPI 2019-12-01 /pmc/articles/PMC6928995/ /pubmed/31805667 http://dx.doi.org/10.3390/s19235296 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Quan
Chen, Qijin
Niu, Xiaoji
Shi, Chuang
Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement
title Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement
title_full Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement
title_fullStr Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement
title_full_unstemmed Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement
title_short Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement
title_sort requirement assessment of the relative spatial accuracy of a motion-constrained gnss/ins in shortwave track irregularity measurement
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928995/
https://www.ncbi.nlm.nih.gov/pubmed/31805667
http://dx.doi.org/10.3390/s19235296
work_keys_str_mv AT zhangquan requirementassessmentoftherelativespatialaccuracyofamotionconstrainedgnssinsinshortwavetrackirregularitymeasurement
AT chenqijin requirementassessmentoftherelativespatialaccuracyofamotionconstrainedgnssinsinshortwavetrackirregularitymeasurement
AT niuxiaoji requirementassessmentoftherelativespatialaccuracyofamotionconstrainedgnssinsinshortwavetrackirregularitymeasurement
AT shichuang requirementassessmentoftherelativespatialaccuracyofamotionconstrainedgnssinsinshortwavetrackirregularitymeasurement