Cargando…
A Novel Method for Identifying Crack and Shaft Misalignment Faults in Rotor Systems under Noisy Environments Based on CNN
Crack and shaft misalignment are two common types of fault in a rotor system, both of which have very similar dynamic response characteristics, and the vibration signals are vulnerable to noise contamination because of the interaction among different components of rotating machinery in the actual in...
Autores principales: | Zhao, Wang, Hua, Chunrong, Dong, Dawei, Ouyang, Huajiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929114/ https://www.ncbi.nlm.nih.gov/pubmed/31775317 http://dx.doi.org/10.3390/s19235158 |
Ejemplares similares
-
CNN-Based Identification of Parkinson’s Disease from Continuous Speech in Noisy Environments
por: Faragó, Paul, et al.
Publicado: (2023) -
Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments
por: Xu, Wei, et al.
Publicado: (2017) -
Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion
por: Xiao, Yancai, et al.
Publicado: (2021) -
CNN-Based Fault Detection of Scan Matching for Accurate SLAM in Dynamic Environments
por: Jeong, Hyein, et al.
Publicado: (2023) -
Misalignment Fault Prediction of Wind Turbines Based on Improved Artificial Fish Swarm Algorithm
por: Hua, Zhe, et al.
Publicado: (2021)