Cargando…
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
Multi-sensor data fusion is a feasible technique to achieve accurate and robust results in fault diagnosis of rotating machinery under complex conditions. However, the problem of information losses is always ignored during the fusion process. To solve above problem, an ensemble convolutional neural...
Autores principales: | Liu, Yang, Yan, Xunshi, Zhang, Chen-an, Liu, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929198/ https://www.ncbi.nlm.nih.gov/pubmed/31810161 http://dx.doi.org/10.3390/s19235300 |
Ejemplares similares
-
An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis
por: Li, Shaobo, et al.
Publicado: (2017) -
Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Xu, Gaowei, et al.
Publicado: (2019) -
An Anti-Noise Convolutional Neural Network for Bearing Fault Diagnosis Based on Multi-Channel Data
por: Zhang, Wei-Tao, et al.
Publicado: (2023) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023) -
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
por: Li, Guoqiang, et al.
Publicado: (2019)