Cargando…
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
Objectives: To investigate the ability of radiomics features from MRI in differentiating anaplastic oligodendroglioma (AO) from atypical low-grade oligodendroglioma using machine-learning algorithms. Methods: A total number of 101 qualified patients (50 participants with AO and 51 with atypical low-...
Autores principales: | Zhang, Yang, Chen, Chaoyue, Cheng, Yangfan, Teng, Yuen, Guo, Wen, Xu, Hui, Ou, Xuejin, Wang, Jian, Li, Hui, Ma, Xuelei, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929242/ https://www.ncbi.nlm.nih.gov/pubmed/31921635 http://dx.doi.org/10.3389/fonc.2019.01371 |
Ejemplares similares
-
Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma
por: Fan, Yimeng, et al.
Publicado: (2019) -
The feasibility of MRI texture analysis in distinguishing glioblastoma, anaplastic astrocytoma and anaplastic oligodendroglioma
por: Teng, Yuen, et al.
Publicado: (2022) -
Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques
por: Chen, Boran, et al.
Publicado: (2021) -
TCF12 is mutated in anaplastic oligodendroglioma
por: Labreche, Karim, et al.
Publicado: (2015) -
Multiple Extraneural Metastases of Anaplastic Oligodendroglioma
por: Aydemir, Fatih, et al.
Publicado: (2018)