Cargando…
A robustness metric for biological data clustering algorithms
BACKGROUND: Cluster analysis is a core task in modern data-centric computation. Algorithmic choice is driven by factors such as data size and heterogeneity, the similarity measures employed, and the type of clusters sought. Familiarity and mere preference often play a significant role as well. Compa...
Autores principales: | Lu, Yuping, Phillips, Charles A., Langston, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929270/ https://www.ncbi.nlm.nih.gov/pubmed/31874625 http://dx.doi.org/10.1186/s12859-019-3089-6 |
Ejemplares similares
-
On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types
por: Zhang, Yun, et al.
Publicado: (2014) -
Selecting single cell clustering parameter values using subsampling-based robustness metrics
por: Patterson-Cross, Ryan B., et al.
Publicado: (2021) -
Clustering gene expression data with a penalized graph-based metric
por: Bayá, Ariel E, et al.
Publicado: (2011) -
A new unsupervised gene clustering algorithm based on the integration of biological knowledge into expression data
por: Verbanck, Marie, et al.
Publicado: (2013) -
A robust data scaling algorithm to improve classification accuracies in biomedical data
por: Cao, Xi Hang, et al.
Publicado: (2016)