Cargando…
Research on predicting 2D-HP protein folding using reinforcement learning with full state space
BACKGROUND: Protein structure prediction has always been an important issue in bioinformatics. Prediction of the two-dimensional structure of proteins based on the hydrophobic polarity model is a typical non-deterministic polynomial hard problem. Currently reported hydrophobic polarity model optimiz...
Autores principales: | Wu, Hongjie, Yang, Ru, Fu, Qiming, Chen, Jianping, Lu, Weizhong, Li, Haiou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929271/ https://www.ncbi.nlm.nih.gov/pubmed/31874607 http://dx.doi.org/10.1186/s12859-019-3259-6 |
Ejemplares similares
-
Research on RNA secondary structure predicting via bidirectional recurrent neural network
por: Lu, Weizhong, et al.
Publicado: (2021) -
Theory of HP spaces
por: Duren, Peter Larkin
Publicado: (1970) -
RFLMDA: A Novel Reinforcement Learning-Based Computational Model for Human MicroRNA-Disease Association Prediction
por: Cui, Linqian, et al.
Publicado: (2021) -
Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter
por: Lu, Weizhong, et al.
Publicado: (2019) -
Ranking near-native candidate protein structures via random forest classification
por: Wu, Hongjie, et al.
Publicado: (2019)