Cargando…
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
BACKGROUND: Single-cell RNA-sequencing (scRNA-seq) is a transformative technology, allowing global transcriptomes of individual cells to be profiled with high accuracy. An essential task in scRNA-seq data analysis is the identification of cell types from complex samples or tissues profiled in an exp...
Autores principales: | Geddes, Thomas A., Kim, Taiyun, Nan, Lihao, Burchfield, James G., Yang, Jean Y. H., Tao, Dacheng, Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929272/ https://www.ncbi.nlm.nih.gov/pubmed/31870278 http://dx.doi.org/10.1186/s12859-019-3179-5 |
Ejemplares similares
-
scReClassify: post hoc cell type classification of single-cell rNA-seq data
por: Kim, Taiyun, et al.
Publicado: (2019) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023) -
SnapKin: a snapshot deep learning ensemble for kinase-substrate prediction from phosphoproteomics data
por: Xiao, Di, et al.
Publicado: (2023) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks
por: Rao, Jiahua, et al.
Publicado: (2021)