Cargando…
Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter
BACKGROUND: RNA secondary structure prediction is an important issue in structural bioinformatics, and RNA pseudoknotted secondary structure prediction represents an NP-hard problem. Recently, many different machine-learning methods, Markov models, and neural networks have been employed for this pro...
Autores principales: | Lu, Weizhong, Tang, Ye, Wu, Hongjie, Huang, Hongmei, Fu, Qiming, Qiu, Jing, Li, Haiou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929275/ https://www.ncbi.nlm.nih.gov/pubmed/31874602 http://dx.doi.org/10.1186/s12859-019-3258-7 |
Ejemplares similares
-
Research on RNA secondary structure predicting via bidirectional recurrent neural network
por: Lu, Weizhong, et al.
Publicado: (2021) -
Ranking near-native candidate protein structures via random forest classification
por: Wu, Hongjie, et al.
Publicado: (2019) -
Research on predicting 2D-HP protein folding using reinforcement learning with full state space
por: Wu, Hongjie, et al.
Publicado: (2019) -
Application of DNA-Binding Protein Prediction Based on Graph Convolutional Network and Contact Map
por: Lu, Weizhong, et al.
Publicado: (2022) -
Approximate nonlinear filtering with a recurrent neural network
por: Kutschireiter, Anna, et al.
Publicado: (2015)