Cargando…
Learning misclassification costs for imbalanced classification on gene expression data
BACKGROUND: Cost-sensitive algorithm is an effective strategy to solve imbalanced classification problem. However, the misclassification costs are usually determined empirically based on user expertise, which leads to unstable performance of cost-sensitive classification. Therefore, an efficient and...
Autores principales: | Lu, Huijuan, Xu, Yige, Ye, Minchao, Yan, Ke, Gao, Zhigang, Jin, Qun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929277/ https://www.ncbi.nlm.nih.gov/pubmed/31874599 http://dx.doi.org/10.1186/s12859-019-3255-x |
Ejemplares similares
-
Applying Cost-Sensitive Extreme Learning Machine and Dissimilarity Integration to Gene Expression Data Classification
por: Liu, Yanqiu, et al.
Publicado: (2016) -
Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention
por: Nguyen, Viet Dung, et al.
Publicado: (2022) -
Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine
por: Wang, Ke-Fan, et al.
Publicado: (2022) -
Adaptive Fusion Based Method for Imbalanced Data Classification
por: Liang, Zefeng, et al.
Publicado: (2022) -
An empirical evaluation of sampling methods for the classification of imbalanced data
por: Kim, Misuk, et al.
Publicado: (2022)