Cargando…

DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions

BACKGROUND: Drug-drug interactions (DDIs) are a major concern in patients’ medication. It’s unfeasible to identify all potential DDIs using experimental methods which are time-consuming and expensive. Computational methods provide an effective strategy, however, facing challenges due to the lack of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yi, Peng, Hui, Zhang, Xiaocai, Zhao, Zhixun, Gao, Xiaoying, Li, Jinyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929327/
https://www.ncbi.nlm.nih.gov/pubmed/31870276
http://dx.doi.org/10.1186/s12859-019-3214-6
Descripción
Sumario:BACKGROUND: Drug-drug interactions (DDIs) are a major concern in patients’ medication. It’s unfeasible to identify all potential DDIs using experimental methods which are time-consuming and expensive. Computational methods provide an effective strategy, however, facing challenges due to the lack of experimentally verified negative samples. RESULTS: To address this problem, we propose a novel positive-unlabeled learning method named DDI-PULearn for large-scale drug-drug-interaction predictions. DDI-PULearn first generates seeds of reliable negatives via OCSVM (one-class support vector machine) under a high-recall constraint and via the cosine-similarity based KNN (k-nearest neighbors) as well. Then trained with all the labeled positives (i.e., the validated DDIs) and the generated seed negatives, DDI-PULearn employs an iterative SVM to identify a set of entire reliable negatives from the unlabeled samples (i.e., the unobserved DDIs). Following that, DDI-PULearn represents all the labeled positives and the identified negatives as vectors of abundant drug properties by a similarity-based method. Finally, DDI-PULearn transforms these vectors into a lower-dimensional space via PCA (principal component analysis) and utilizes the compressed vectors as input for binary classifications. The performance of DDI-PULearn is evaluated on simulative prediction for 149,878 possible interactions between 548 drugs, comparing with two baseline methods and five state-of-the-art methods. Related experiment results show that the proposed method for the representation of DDIs characterizes them accurately. DDI-PULearn achieves superior performance owing to the identified reliable negatives, outperforming all other methods significantly. In addition, the predicted novel DDIs suggest that DDI-PULearn is capable to identify novel DDIs. CONCLUSIONS: The results demonstrate that positive-unlabeled learning paves a new way to tackle the problem caused by the lack of experimentally verified negatives in the computational prediction of DDIs.