Cargando…
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
BACKGROUND: Drug-drug interactions (DDIs) are a major concern in patients’ medication. It’s unfeasible to identify all potential DDIs using experimental methods which are time-consuming and expensive. Computational methods provide an effective strategy, however, facing challenges due to the lack of...
Autores principales: | Zheng, Yi, Peng, Hui, Zhang, Xiaocai, Zhao, Zhixun, Gao, Xiaoying, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929327/ https://www.ncbi.nlm.nih.gov/pubmed/31870276 http://dx.doi.org/10.1186/s12859-019-3214-6 |
Ejemplares similares
-
Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces
por: Zheng, Yi, et al.
Publicado: (2019) -
Screening drug-target interactions with positive-unlabeled learning
por: Peng, Lihong, et al.
Publicado: (2017) -
Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
por: Hameed, Pathima Nusrath, et al.
Publicado: (2017) -
Positive-unlabeled learning for the prediction of conformational B-cell epitopes
por: Ren, Jing, et al.
Publicado: (2015) -
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
por: Schwarz, Kyriakos, et al.
Publicado: (2021)