Cargando…
Integrative subspace clustering by common and specific decomposition for applications on cancer subtype identification
BACKGROUND: Recent high throughput technologies have been applied for collecting heterogeneous biomedical omics datasets. Computational analysis of the multi-omics datasets could potentially reveal deep insights for a given disease. Most existing clustering methods by multi-omics data assume strong...
Autores principales: | Guo, Yin, Li, Huiran, Cai, Menglan, Li, Limin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929329/ https://www.ncbi.nlm.nih.gov/pubmed/31874642 http://dx.doi.org/10.1186/s12920-019-0633-1 |
Ejemplares similares
-
Algebraic approach for subspace decomposition and clustering of neural activity
por: Adam, Elie M., et al.
Publicado: (2022) -
Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus
por: Cai, Menglan, et al.
Publicado: (2017) -
Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
por: Zhuge, Wenzhang, et al.
Publicado: (2017) -
MicroRNA-disease association prediction by matrix tri-factorization
por: Li, Huiran, et al.
Publicado: (2020) -
An Adaptive Sparse Subspace Clustering for Cell Type Identification
por: Zheng, Ruiqing, et al.
Publicado: (2020)