Cargando…
Joint learning improves protein abundance prediction in cancers
BACKGROUND: The classic central dogma in biology is the information flow from DNA to mRNA to protein, yet complicated regulatory mechanisms underlying protein translation often lead to weak correlations between mRNA and protein abundances. This is particularly the case in cancer samples and when eva...
Autores principales: | Li, Hongyang, Siddiqui, Omer, Zhang, Hongjiu, Guan, Yuanfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929375/ https://www.ncbi.nlm.nih.gov/pubmed/31870366 http://dx.doi.org/10.1186/s12915-019-0730-9 |
Ejemplares similares
-
On protein abundance distributions in complex mixtures
por: Koziol, JA, et al.
Publicado: (2013) -
FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples
por: Xiao, Yao, et al.
Publicado: (2020) -
Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing
por: Wu, Shaocheng, et al.
Publicado: (2020) -
Treatment Stratification of Patients with Metastatic Castration-Resistant Prostate Cancer by Machine Learning
por: Deng, Kaiwen, et al.
Publicado: (2019) -
Detecting Asymmetric Patterns and Localizing Cancers on Mammograms
por: Guan, Yuanfang, et al.
Publicado: (2020)