Cargando…
Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization
BACKGROUND: Synthetic lethality has attracted a lot of attentions in cancer therapeutics due to its utility in identifying new anticancer drug targets. Identifying synthetic lethal (SL) interactions is the key step towards the exploration of synthetic lethality in cancer treatment. However, biologic...
Autores principales: | Huang, Jiang, Wu, Min, Lu, Fan, Ou-Yang, Le, Zhu, Zexuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929405/ https://www.ncbi.nlm.nih.gov/pubmed/31870274 http://dx.doi.org/10.1186/s12859-019-3197-3 |
Ejemplares similares
-
Predicting lncRNA–Protein Interaction With Weighted Graph-Regularized Matrix Factorization
por: Sun, Xibo, et al.
Publicado: (2021) -
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion
por: Wang, Minhui, et al.
Publicado: (2018) -
KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality
por: Zhang, Ke, et al.
Publicado: (2023) -
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
por: Wang, Shike, et al.
Publicado: (2021) -
Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction
por: Fan, Kunjie, et al.
Publicado: (2023)