Cargando…
RCMF: a robust collaborative matrix factorization method to predict miRNA-disease associations
BACKGROUND: Predicting miRNA-disease associations (MDAs) is time-consuming and expensive. It is imminent to improve the accuracy of prediction results. So it is crucial to develop a novel computing technology to predict new MDAs. Although some existing methods can effectively predict novel MDAs, the...
Autores principales: | Cui, Zhen, Liu, Jin-Xing, Gao, Ying-Lian, Zheng, Chun-Hou, Wang, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929455/ https://www.ncbi.nlm.nih.gov/pubmed/31874608 http://dx.doi.org/10.1186/s12859-019-3260-0 |
Ejemplares similares
-
NPCMF: Nearest Profile-based Collaborative Matrix Factorization method for predicting miRNA-disease associations
por: Gao, Ying-Lian, et al.
Publicado: (2019) -
MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations
por: Wu, Tian-Ru, et al.
Publicado: (2020) -
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
por: Zhou, Feng, et al.
Publicado: (2021) -
SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA–Disease Association Prediction
por: Li, Lei, et al.
Publicado: (2021) -
DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization
por: Liu, Jin-Xing, et al.
Publicado: (2021)