Cargando…
How to balance the bioinformatics data: pseudo-negative sampling
BACKGROUND: Imbalanced datasets are commonly encountered in bioinformatics classification problems, that is, the number of negative samples is much larger than that of positive samples. Particularly, the data imbalance phenomena will make us underestimate the performance of the minority class of pos...
Autores principales: | Zhang, Yongqing, Qiao, Shaojie, Lu, Rongzhao, Han, Nan, Liu, Dingxiang, Zhou, Jiliu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929457/ https://www.ncbi.nlm.nih.gov/pubmed/31874622 http://dx.doi.org/10.1186/s12859-019-3269-4 |
Ejemplares similares
-
Closha: bioinformatics workflow system for the analysis of massive sequencing data
por: Ko, GunHwan, et al.
Publicado: (2018) -
Assessing the precision of a time-sampling-based study among GPs: balancing sample size and measurement frequency
por: van Hassel, Daniël, et al.
Publicado: (2017) -
How Poor Is Your Sample? A Simple Approach for Estimating the Relative Economic Status of Small and Nonrepresentative Samples
por: Ostermann, Jan, et al.
Publicado: (2023) -
Methodology for Constructing Problem Definitions in Bioinformatics
por: Hauth, Amy M., et al.
Publicado: (2008) -
PhosFox: a bioinformatics tool for peptide-level processing of LC-MS/MS-based phosphoproteomic data
por: Söderholm, Sandra, et al.
Publicado: (2014)