Cargando…
MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks
BACKGROUND: Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database search but is limited to peptides that have been prev...
Autores principales: | Lin, Yang-Ming, Chen, Ching-Tai, Chang, Jia-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929458/ https://www.ncbi.nlm.nih.gov/pubmed/31874640 http://dx.doi.org/10.1186/s12864-019-6297-6 |
Ejemplares similares
-
Development and validation of an HILIC–MS/MS method by one-step precipitation for chloroquine in miniature pig plasma
por: Wang, Zhan-Zhang, et al.
Publicado: (2016) -
metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering
por: Hao, Chunlin, et al.
Publicado: (2023) -
Organization of GC/MS and LC/MS metabolomics data into chemical libraries
por: DeHaven, Corey D, et al.
Publicado: (2010) -
Whole gel processing procedure for GeLC-MS/MS based proteomics
por: Piersma, Sander R, et al.
Publicado: (2013) -
Multi-Segment Direct Inject nano-ESI-LTQ-FT-ICR-MS/MS For Protein Identification
por: Chen, Jing, et al.
Publicado: (2011)