Cargando…
Semi-supervised prediction of protein interaction sites from unlabeled sample information
BACKGROUND: The recognition of protein interaction sites is of great significance in many biological processes, signaling pathways and drug designs. However, most sites on protein sequences cannot be defined as interface or non-interface sites because only a small part of protein interactions had be...
Autores principales: | Wang, Ye, Mei, Changqing, Zhou, Yuming, Wang, Yan, Zheng, Chunhou, Zhen, Xiao, Xiong, Yan, Chen, Peng, Zhang, Jun, Wang, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929468/ https://www.ncbi.nlm.nih.gov/pubmed/31874616 http://dx.doi.org/10.1186/s12859-019-3274-7 |
Ejemplares similares
-
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
por: Mourad, Raphaël
Publicado: (2023) -
Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023) -
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
por: Chen, Xinan, et al.
Publicado: (2018) -
Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023) -
scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
por: Wang, Zile, et al.
Publicado: (2023)