Cargando…
Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis
Mesenchymal stem cells (MSCs) transplantation is a promising antifibrotic strategy but facing clinical controversies. Inspired by advances in nanomedicine, we aimed to bypass these clinical barriers of MSCs by identifying the key antifibrotic molecule of MSCs and developing a specific liver-targetin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929629/ https://www.ncbi.nlm.nih.gov/pubmed/31903104 http://dx.doi.org/10.7150/thno.37301 |
_version_ | 1783482739785203712 |
---|---|
author | Wang, Min Zhang, Miao Fu, Lianhua Lin, Jing Zhou, Xinmin Zhou, Pinghong Huang, Peng Hu, Hao Han, Ying |
author_facet | Wang, Min Zhang, Miao Fu, Lianhua Lin, Jing Zhou, Xinmin Zhou, Pinghong Huang, Peng Hu, Hao Han, Ying |
author_sort | Wang, Min |
collection | PubMed |
description | Mesenchymal stem cells (MSCs) transplantation is a promising antifibrotic strategy but facing clinical controversies. Inspired by advances in nanomedicine, we aimed to bypass these clinical barriers of MSCs by identifying the key antifibrotic molecule of MSCs and developing a specific liver-targeting nanocarrier. Methods: Cytokines secreted by MSCs were examined with serum stimulation of cirrhotic patients. Immunohistochemistry, microarray, immunoblotting, and quantitative real-time PCR (qRT-PCR) were applied to identify the critical antifibrotic cytokine and to discover its role in modulating antifibrotic effects. Biomineralization method was used to prepare calcium phosphate nanoparticles (NPs). The targeting and therapeutic efficiency of NPs were evaluated by in vivo imaging and biochemical studies on fibrotic mice induced by CCl(4). Results: The stimulated MSCs exhibited high-level expression of Tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6). On animal study, exogenous administration of TSG-6 alone can ameliorate liver fibrosis while TSG-6 knocked MSCs (Lv-TSG-6 MSCs) lost antifibrotic effects. Further studies verified the importance of TSG-6 and identified its antifibrotic mechanism by modulating M2 macrophages and increasing matrix metalloproteinase 12 (MMP12) expression. Additionally, we found a feedback loop between TSG-6, MMP12 and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), which may improve our understanding of the aggravating process of cirrhosis and antifibrotic mechanisms of TSG-6 and MSCs. Based on these findings, we developed calcium phosphate nanoparticles (CaP@BSA NPs) by biomineralization method using bovine serum albumin (BSA) as the biotemplate. Imaging tracking and drug loading studies showed specific liver targeting and high TSG-6 loading efficacy of as-prepared CaP@BSA NPs. In vivo therapeutic study further demonstrated the improved therapeutic effects of TSG-6 loaded CaP@BSA. Conclusions: TSG-6 was a major antifibrotic cytokine of MSCs, TSG-6 loaded CaP@BSA NPs showed specific liver accumulation and improved therapeutic effects, which indicated translational potentials of CaP@BSA as a promising drug carrier for the liver disease management. |
format | Online Article Text |
id | pubmed-6929629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-69296292020-01-04 Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis Wang, Min Zhang, Miao Fu, Lianhua Lin, Jing Zhou, Xinmin Zhou, Pinghong Huang, Peng Hu, Hao Han, Ying Theranostics Research Paper Mesenchymal stem cells (MSCs) transplantation is a promising antifibrotic strategy but facing clinical controversies. Inspired by advances in nanomedicine, we aimed to bypass these clinical barriers of MSCs by identifying the key antifibrotic molecule of MSCs and developing a specific liver-targeting nanocarrier. Methods: Cytokines secreted by MSCs were examined with serum stimulation of cirrhotic patients. Immunohistochemistry, microarray, immunoblotting, and quantitative real-time PCR (qRT-PCR) were applied to identify the critical antifibrotic cytokine and to discover its role in modulating antifibrotic effects. Biomineralization method was used to prepare calcium phosphate nanoparticles (NPs). The targeting and therapeutic efficiency of NPs were evaluated by in vivo imaging and biochemical studies on fibrotic mice induced by CCl(4). Results: The stimulated MSCs exhibited high-level expression of Tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6). On animal study, exogenous administration of TSG-6 alone can ameliorate liver fibrosis while TSG-6 knocked MSCs (Lv-TSG-6 MSCs) lost antifibrotic effects. Further studies verified the importance of TSG-6 and identified its antifibrotic mechanism by modulating M2 macrophages and increasing matrix metalloproteinase 12 (MMP12) expression. Additionally, we found a feedback loop between TSG-6, MMP12 and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), which may improve our understanding of the aggravating process of cirrhosis and antifibrotic mechanisms of TSG-6 and MSCs. Based on these findings, we developed calcium phosphate nanoparticles (CaP@BSA NPs) by biomineralization method using bovine serum albumin (BSA) as the biotemplate. Imaging tracking and drug loading studies showed specific liver targeting and high TSG-6 loading efficacy of as-prepared CaP@BSA NPs. In vivo therapeutic study further demonstrated the improved therapeutic effects of TSG-6 loaded CaP@BSA. Conclusions: TSG-6 was a major antifibrotic cytokine of MSCs, TSG-6 loaded CaP@BSA NPs showed specific liver accumulation and improved therapeutic effects, which indicated translational potentials of CaP@BSA as a promising drug carrier for the liver disease management. Ivyspring International Publisher 2020-01-01 /pmc/articles/PMC6929629/ /pubmed/31903104 http://dx.doi.org/10.7150/thno.37301 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Wang, Min Zhang, Miao Fu, Lianhua Lin, Jing Zhou, Xinmin Zhou, Pinghong Huang, Peng Hu, Hao Han, Ying Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
title | Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
title_full | Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
title_fullStr | Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
title_full_unstemmed | Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
title_short | Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
title_sort | liver-targeted delivery of tsg-6 by calcium phosphate nanoparticles for the management of liver fibrosis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929629/ https://www.ncbi.nlm.nih.gov/pubmed/31903104 http://dx.doi.org/10.7150/thno.37301 |
work_keys_str_mv | AT wangmin livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT zhangmiao livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT fulianhua livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT linjing livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT zhouxinmin livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT zhoupinghong livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT huangpeng livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT huhao livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis AT hanying livertargeteddeliveryoftsg6bycalciumphosphatenanoparticlesforthemanagementofliverfibrosis |