Cargando…
E-Synthesis: A Bayesian Framework for Causal Assessment in Pharmacosurveillance
Background: Evidence suggesting adverse drug reactions often emerges unsystematically and unpredictably in form of anecdotal reports, case series and survey data. Safety trials and observational studies also provide crucial information regarding the (un-)safety of drugs. Hence, integrating multiple...
Autores principales: | De Pretis, Francesco, Landes, Jürgen, Osimani, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929659/ https://www.ncbi.nlm.nih.gov/pubmed/31920632 http://dx.doi.org/10.3389/fphar.2019.01317 |
Ejemplares similares
-
New Insights in Computational Methods for Pharmacovigilance: E-Synthesis, a Bayesian Framework for Causal Assessment
por: De Pretis, Francesco, et al.
Publicado: (2019) -
EA(3): A softmax algorithm for evidence appraisal aggregation
por: De Pretis, Francesco, et al.
Publicado: (2021) -
Fast Methods for Drug Approval: Research Perspectives for Pandemic Preparedness
por: Abdin, Ahmad Yaman, et al.
Publicado: (2023) -
Incentives for Research Effort: An Evolutionary Model of Publication Markets with Double-Blind and Open Review
por: Radzvilas, Mantas, et al.
Publicado: (2022) -
Curcuma longa Hepatotoxicity: A Baseless Accusation. Cases Assessed for Causality Using RUCAM Method
por: Stati, Gianmarco, et al.
Publicado: (2021)