Cargando…

Impact of DNA source on genetic variant detection from human whole-genome sequencing data

BACKGROUND: Whole blood is currently the most common DNA source for whole-genome sequencing (WGS), but for studies requiring non-invasive collection, self-collection, greater sample stability or additional tissue references, saliva or buccal samples may be preferred. However, the relative quality of...

Descripción completa

Detalles Bibliográficos
Autores principales: Trost, Brett, Walker, Susan, Haider, Syed A, Sung, Wilson W L, Pereira, Sergio, Phillips, Charly L, Higginbotham, Edward J, Strug, Lisa J, Nguyen, Charlotte, Raajkumar, Akshaya, Szego, Michael J, Marshall, Christian R, Scherer, Stephen W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929712/
https://www.ncbi.nlm.nih.gov/pubmed/31515274
http://dx.doi.org/10.1136/jmedgenet-2019-106281
Descripción
Sumario:BACKGROUND: Whole blood is currently the most common DNA source for whole-genome sequencing (WGS), but for studies requiring non-invasive collection, self-collection, greater sample stability or additional tissue references, saliva or buccal samples may be preferred. However, the relative quality of sequencing data and accuracy of genetic variant detection from blood-derived, saliva-derived and buccal-derived DNA need to be thoroughly investigated. METHODS: Matched blood, saliva and buccal samples from four unrelated individuals were used to compare sequencing metrics and variant-detection accuracy among these DNA sources. RESULTS: We observed significant differences among DNA sources for sequencing quality metrics such as percentage of reads aligned and mean read depth (p<0.05). Differences were negligible in the accuracy of detecting short insertions and deletions; however, the false positive rate for single nucleotide variation detection was slightly higher in some saliva and buccal samples. The sensitivity of copy number variant (CNV) detection was up to 25% higher in blood samples, depending on CNV size and type, and appeared to be worse in saliva and buccal samples with high bacterial concentration. We also show that methylation-based enrichment for eukaryotic DNA in saliva and buccal samples increased alignment rates but also reduced read-depth uniformity, hampering CNV detection. CONCLUSION: For WGS, we recommend using DNA extracted from blood rather than saliva or buccal swabs; if saliva or buccal samples are used, we recommend against using methylation-based eukaryotic DNA enrichment. All data used in this study are available for further open-science investigation.