Cargando…
The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis
Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930189/ https://www.ncbi.nlm.nih.gov/pubmed/31921707 http://dx.doi.org/10.3389/fcimb.2019.00432 |
_version_ | 1783482841868271616 |
---|---|
author | Ng, Hong Min Slakeski, Nada Butler, Catherine A. Veith, Paul D. Chen, Yu-Yen Liu, Sze Wei Hoffmann, Brigitte Dashper, Stuart G. Reynolds, Eric C. |
author_facet | Ng, Hong Min Slakeski, Nada Butler, Catherine A. Veith, Paul D. Chen, Yu-Yen Liu, Sze Wei Hoffmann, Brigitte Dashper, Stuart G. Reynolds, Eric C. |
author_sort | Ng, Hong Min |
collection | PubMed |
description | Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis. |
format | Online Article Text |
id | pubmed-6930189 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69301892020-01-09 The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis Ng, Hong Min Slakeski, Nada Butler, Catherine A. Veith, Paul D. Chen, Yu-Yen Liu, Sze Wei Hoffmann, Brigitte Dashper, Stuart G. Reynolds, Eric C. Front Cell Infect Microbiol Cellular and Infection Microbiology Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis. Frontiers Media S.A. 2019-12-18 /pmc/articles/PMC6930189/ /pubmed/31921707 http://dx.doi.org/10.3389/fcimb.2019.00432 Text en Copyright © 2019 Ng, Slakeski, Butler, Veith, Chen, Liu, Hoffmann, Dashper and Reynolds. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Ng, Hong Min Slakeski, Nada Butler, Catherine A. Veith, Paul D. Chen, Yu-Yen Liu, Sze Wei Hoffmann, Brigitte Dashper, Stuart G. Reynolds, Eric C. The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis |
title | The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis |
title_full | The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis |
title_fullStr | The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis |
title_full_unstemmed | The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis |
title_short | The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis |
title_sort | role of treponema denticola motility in synergistic biofilm formation with porphyromonas gingivalis |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930189/ https://www.ncbi.nlm.nih.gov/pubmed/31921707 http://dx.doi.org/10.3389/fcimb.2019.00432 |
work_keys_str_mv | AT nghongmin theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT slakeskinada theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT butlercatherinea theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT veithpauld theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT chenyuyen theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT liuszewei theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT hoffmannbrigitte theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT dashperstuartg theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT reynoldsericc theroleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT nghongmin roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT slakeskinada roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT butlercatherinea roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT veithpauld roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT chenyuyen roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT liuszewei roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT hoffmannbrigitte roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT dashperstuartg roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis AT reynoldsericc roleoftreponemadenticolamotilityinsynergisticbiofilmformationwithporphyromonasgingivalis |