Cargando…
Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture
Molecular dynamics simulations were performed to study the bulk and interfacial properties of methane + n-decane, carbon dioxide + n-decane, and methane + carbon dioxide + n-decane systems under geological conditions. In addition, theoretical calculations using the predictive Peng-Robinson equation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930215/ https://www.ncbi.nlm.nih.gov/pubmed/31875027 http://dx.doi.org/10.1038/s41598-019-56378-y |
Sumario: | Molecular dynamics simulations were performed to study the bulk and interfacial properties of methane + n-decane, carbon dioxide + n-decane, and methane + carbon dioxide + n-decane systems under geological conditions. In addition, theoretical calculations using the predictive Peng-Robinson equation of state and density gradient theory are carried out to compare with the simulation data. A key finding is the preferential dissolution in the decane-rich phase and adsorption at the interface for carbon dioxide from the methane/carbon dioxide mixture. In general, both the gas solubility and the swelling factor increase with increasing pressure and decreasing temperature. Interestingly, the methane solubility and the swelling of the methane + n-decane system are not strongly influenced by temperature. Our results also show that the presence of methane increases the interfacial tension (IFT) of the carbon dioxide + n-decane system. Typically, the IFT of the studied systems decreases with increasing pressure and temperature. The relatively higher surface excess of the carbon dioxide + n-decane system results in a steeper decrease in its IFT as a function of pressure. Such systematic investigations may help to understand the behavior of the carbon dioxide-oil system in the presence of impurities such as methane for the design and operation of carbon capture and storage and enhanced oil recovery processes. |
---|