Cargando…
Late-Stage Copper-Catalyzed Radiofluorination of an Arylboronic Ester Derivative of Atorvastatin
There is an unmet need for late-stage (18)F-fluorination strategies to label molecules with a wide range of relevant functionalities to medicinal chemistry, in particular (hetero)arenes, aiming to obtain unique in vivo information on the pharmacokinetics/pharmacodynamics (PK/PD) using positron emiss...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930542/ https://www.ncbi.nlm.nih.gov/pubmed/31756986 http://dx.doi.org/10.3390/molecules24234210 |
Sumario: | There is an unmet need for late-stage (18)F-fluorination strategies to label molecules with a wide range of relevant functionalities to medicinal chemistry, in particular (hetero)arenes, aiming to obtain unique in vivo information on the pharmacokinetics/pharmacodynamics (PK/PD) using positron emission tomography (PET). In the last few years, Cu-mediated oxidative radiofluorination of arylboronic esters/acids arose and has been successful in small molecules containing relatively simple (hetero)aromatic groups. However, this technique is sparsely used in the radiosynthesis of clinically significant molecules containing more complex backbones with several aromatic motifs. In this work, we add a new entry to this very limited database by presenting our recent results on the (18)F-fluorination of an arylboronic ester derivative of atorvastatin. The moderate average conversion of [(18)F]F(−) (12%), in line with what has been reported for similarly complex molecules, stressed an overview through the literature to understand the radiolabeling variables and limitations preventing consistently higher yields. Nevertheless, the current disparity of procedures reported still hampers a consensual and conclusive output. |
---|