Cargando…
Accession-Level Differentiation of Urushiol Levels, and Identification of Cardanols in Nascent Emerged Poison Ivy Seedlings
Poison ivy (Toxicodendron radicans (L.) Kuntze) shows accession-level differentiation in a variety of morphometric traits, suggesting local adaptation. To investigate whether the presumed defense compound urushiol also demonstrates accession-level accumulation differences, in vitro nascent germinate...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930629/ https://www.ncbi.nlm.nih.gov/pubmed/31757036 http://dx.doi.org/10.3390/molecules24234213 |
Sumario: | Poison ivy (Toxicodendron radicans (L.) Kuntze) shows accession-level differentiation in a variety of morphometric traits, suggesting local adaptation. To investigate whether the presumed defense compound urushiol also demonstrates accession-level accumulation differences, in vitro nascent germinated poison ivy seedlings from geographically isolated populations were germinated in vitro and then assayed for known urushiol congener accumulation levels. Significant accession-level differences in the accumulation levels of total C15- and C17-, total C15-, total C17-, specific C15 congeners, and specific C17 congeners of urushiol were identified. In addition, hereto novel C15- and C17-urushiol isomers were identified as well. Cardanols are assumed to be the penultimate metabolites giving rise to urushiols, but this assumption was not previously empirically validated. C15-cardanol congeners and isomers corresponding to expected substrates needed to produce the observed C15-urushiol congeners and isomers were identified in the same poison ivy seedling extracts. Total C15-cardanol and C15-cardanol congeners also showed significant accession-level differences. Based on the observed C15-cardanol congeners in poison ivy, the penultimate step in urushiol biosynthesis was proposed to be a cardanol-specific hydroxylase activity. |
---|