Cargando…
Robust SAR Automatic Target Recognition Based on Transferred MS-CNN with L(2)-Regularization
Though Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) via Convolutional Neural Networks (CNNs) has made huge progress toward deep learning, some key issues still remain unsolved due to the lack of sufficient samples and robust model. In this paper, we proposed an efficient transfe...
Autores principales: | Zhai, Yikui, Deng, Wenbo, Xu, Ying, Ke, Qirui, Gan, Junying, Sun, Bing, Zeng, Junying, Piuri, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930780/ https://www.ncbi.nlm.nih.gov/pubmed/31915430 http://dx.doi.org/10.1155/2019/9140167 |
Ejemplares similares
-
BeautyNet: Joint Multiscale CNN and Transfer Learning Method for Unconstrained Facial Beauty Prediction
por: Zhai, Yikui, et al.
Publicado: (2019) -
TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR
por: Ying, Zilu, et al.
Publicado: (2020) -
Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition
por: Zeng, Junying, et al.
Publicado: (2018) -
Aeroengine Working Condition Recognition Based on MsCNN-BiLSTM
por: Zheng, Jinsong, et al.
Publicado: (2022) -
Automatic Recognition and Classification System of Thyroid Nodules in CT Images Based on CNN
por: Li, Wenjun, et al.
Publicado: (2021)