Cargando…
α-Synuclein Strains Target Distinct Brain Regions and Cell Types
The clinical and pathological differences between synucleinopathies such as Parkinson’s disease and multiple system atrophy have been postulated to stem from unique strains of α-synuclein aggregates, akin to what occurs in prion diseases. Here, we demonstrate that inoculation of transgenic mice with...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930851/ https://www.ncbi.nlm.nih.gov/pubmed/31792467 http://dx.doi.org/10.1038/s41593-019-0541-x |
Sumario: | The clinical and pathological differences between synucleinopathies such as Parkinson’s disease and multiple system atrophy have been postulated to stem from unique strains of α-synuclein aggregates, akin to what occurs in prion diseases. Here, we demonstrate that inoculation of transgenic mice with different strains of recombinant or brain-derived α-synuclein aggregates produces clinically and pathologically distinct diseases. Strain-specific differences were observed in the signs of neurological illness, time to disease onset, morphology of cerebral α-synuclein deposits, and the conformational properties of the induced aggregates. Moreover, different strains targeted distinct cellular populations and cell types within the brain, recapitulating the selective targeting observed between human synucleinopathies. Strain-specific clinical, pathological, and biochemical differences were faithfully maintained upon serial passaging, implying that α-synuclein propagates via prion-like conformational templating. Thus, pathogenic α-synuclein exhibits key hallmarks of prion strains, providing evidence that disease heterogeneity among the synucleinopathies is caused by distinct α-synuclein strains. |
---|