Cargando…

Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr

The free and open‐source package nlmixr implements pharmacometric nonlinear mixed effects model parameter estimation in R. It provides a uniform language to define pharmacometric models using ordinary differential equations. Performances of the stochastic approximation expectation‐maximization (SAEM...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoemaker, Rik, Fidler, Matthew, Laveille, Christian, Wilkins, Justin J., Hooijmaijers, Richard, Post, Teun M., Trame, Mirjam N., Xiong, Yuan, Wang, Wenping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930853/
https://www.ncbi.nlm.nih.gov/pubmed/31654482
http://dx.doi.org/10.1002/psp4.12471
_version_ 1783482987102339072
author Schoemaker, Rik
Fidler, Matthew
Laveille, Christian
Wilkins, Justin J.
Hooijmaijers, Richard
Post, Teun M.
Trame, Mirjam N.
Xiong, Yuan
Wang, Wenping
author_facet Schoemaker, Rik
Fidler, Matthew
Laveille, Christian
Wilkins, Justin J.
Hooijmaijers, Richard
Post, Teun M.
Trame, Mirjam N.
Xiong, Yuan
Wang, Wenping
author_sort Schoemaker, Rik
collection PubMed
description The free and open‐source package nlmixr implements pharmacometric nonlinear mixed effects model parameter estimation in R. It provides a uniform language to define pharmacometric models using ordinary differential equations. Performances of the stochastic approximation expectation‐maximization (SAEM) and first order‐conditional estimation with interaction (FOCEI) algorithms in nlmixr were compared with those found in the industry standards, Monolix and NONMEM, using the following two scenarios: a simple model fit to 500 sparsely sampled data sets and a range of more complex compartmental models with linear and nonlinear clearance fit to data sets with rich sampling. Estimation results obtained from nlmixr for FOCEI and SAEM matched the corresponding output from NONMEM/FOCEI and Monolix/SAEM closely both in terms of parameter estimates and associated standard errors. These results indicate that nlmixr may provide a viable alternative to existing tools for pharmacometric parameter estimation.
format Online
Article
Text
id pubmed-6930853
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-69308532019-12-27 Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr Schoemaker, Rik Fidler, Matthew Laveille, Christian Wilkins, Justin J. Hooijmaijers, Richard Post, Teun M. Trame, Mirjam N. Xiong, Yuan Wang, Wenping CPT Pharmacometrics Syst Pharmacol Research The free and open‐source package nlmixr implements pharmacometric nonlinear mixed effects model parameter estimation in R. It provides a uniform language to define pharmacometric models using ordinary differential equations. Performances of the stochastic approximation expectation‐maximization (SAEM) and first order‐conditional estimation with interaction (FOCEI) algorithms in nlmixr were compared with those found in the industry standards, Monolix and NONMEM, using the following two scenarios: a simple model fit to 500 sparsely sampled data sets and a range of more complex compartmental models with linear and nonlinear clearance fit to data sets with rich sampling. Estimation results obtained from nlmixr for FOCEI and SAEM matched the corresponding output from NONMEM/FOCEI and Monolix/SAEM closely both in terms of parameter estimates and associated standard errors. These results indicate that nlmixr may provide a viable alternative to existing tools for pharmacometric parameter estimation. John Wiley and Sons Inc. 2019-11-18 2019-12 /pmc/articles/PMC6930853/ /pubmed/31654482 http://dx.doi.org/10.1002/psp4.12471 Text en © 2019 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research
Schoemaker, Rik
Fidler, Matthew
Laveille, Christian
Wilkins, Justin J.
Hooijmaijers, Richard
Post, Teun M.
Trame, Mirjam N.
Xiong, Yuan
Wang, Wenping
Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
title Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
title_full Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
title_fullStr Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
title_full_unstemmed Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
title_short Performance of the SAEM and FOCEI Algorithms in the Open‐Source, Nonlinear Mixed Effect Modeling Tool nlmixr
title_sort performance of the saem and focei algorithms in the open‐source, nonlinear mixed effect modeling tool nlmixr
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930853/
https://www.ncbi.nlm.nih.gov/pubmed/31654482
http://dx.doi.org/10.1002/psp4.12471
work_keys_str_mv AT schoemakerrik performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT fidlermatthew performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT laveillechristian performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT wilkinsjustinj performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT hooijmaijersrichard performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT postteunm performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT tramemirjamn performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT xiongyuan performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr
AT wangwenping performanceofthesaemandfoceialgorithmsintheopensourcenonlinearmixedeffectmodelingtoolnlmixr