Cargando…
A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images
Automatic identification of brain lesions from magnetic resonance imaging (MRI) scans of stroke survivors would be a useful aid in patient diagnosis and treatment planning. It would also greatly facilitate the study of brain-behavior relationships by eliminating the laborious step of having a human...
Autores principales: | Xue, Yunzhe, Farhat, Fadi G., Boukrina, Olga, Barrett, A.M., Binder, Jeffrey R., Roshan, Usman W., Graves, William W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931186/ https://www.ncbi.nlm.nih.gov/pubmed/31865021 http://dx.doi.org/10.1016/j.nicl.2019.102118 |
Ejemplares similares
-
Progressive multifocal leukoencephalopathy lesion and brain parenchymal segmentation from MRI using serial deep convolutional neural networks
por: Al-Louzi, Omar, et al.
Publicado: (2020) -
Cerebral perfusion of the left reading network predicts recovery of reading in subacute to chronic stroke
por: Boukrina, Olga, et al.
Publicado: (2019) -
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
por: Guerrero, R., et al.
Publicado: (2017) -
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017) -
Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
por: McKinley, Richard, et al.
Publicado: (2019)